Russian Military Technology : Updates and Discussions


Senior member
Dec 3, 2017
Russian arms sales in Southeast Asia: What does it mean for the region?
Over the past decade, Russia’s arms sales across Southeast Asia have increased sharply.

Since 2000, Russia has accounted for 25% of major arms sales in Southeast Asia. According to the Stockholm International Peace Research Institute (SIPRI), Russia’s conventional arms sales to Southeast Asia totaled US$6.6 billion between 2010 and 2017, as much as the US and China combined.

A high demand for Russia’s weapons across Southeast Asia offers Moscow a valuable opportunity to strengthen its soft power and develop a sphere of influence across the region.

The expansion of arms sales to Southeast Asian states has raised eyebrows in many capitals, particularly Beijing and Washington. US sanctions against Russia, imposed in response to its invasion of Ukraine in 2014, also prohibit countries across the world from buying weapons from Russia. For China, Russia’s growing role in the South China Sea dispute is likely to become problematic, including Russia’s sales of arms to Southeast Asian states that have territorial disputes with Beijing.

Traditionally, Southeast Asia has relied on China and the US for its defense needs but a growing military threat from China, better and flexible payment options offered by Russia and other, terrorism-related challenges help explain why Moscow may have found an eager market in the region.

Is Russia strengthening its soft power with growing arms sales?
Russia’s hard power is well-known and understood globally. However, the country has not fully exploited its ability to spread influence through soft power resources. This has largely been due to Russia’s reliance on its military strength as the main tool to achieve foreign policy objectives.

The prospects of Russian exports of arms, technology shares and joint military ventures present excellent opportunities for Moscow to build strong and trusting relationships with many governments across Southeast Asia.

For instance, in addition to selling arms, Russia is increasingly involved in joint military exercises with Southeast Asian countries. Last year, Russia and Laos carried out a week-long joint military exercise. Russia and Indonesia are reportedly planning to hold their first joint naval exercise later this year. Russia also holds occasional joint military drills with Vietnam and is the country’s key arms supplier, accounting for 60% of its military imports. Last year, Vietnamese and Russian naval forces held their first major joint exercise. Moscow is also looking to make inroads into the Filipino market is seeking to increase sales to Indonesia, Malaysia and Myanmar.

Moscow has also been actively trying to deepen diplomatic ties with the Philippines and Thailand. These efforts reinforce Moscow’s soft power as they have the potential to bring the regional states into the country’s sphere of influence.

Why are Southeast Asian states buying Russian weapons?
Over the last few years, the rise in territorial disputes, terrorism and competition among rival states has increased the demand for Russian weaponry across Southeast Asia. In this regard, China’s growing military assertiveness in the South China Sea dispute has increased Southeast Asian states’ security worries. Beijing is increasingly viewed as a military threat rather than a positive player. Thus, China is losing its value as an arms supplier for Southeast Asian states.

Russia’s arms are also considerably cheaper than other weapons and come with flexible payment options, increasing their attractiveness of across Southeast Asia.

For many potential suppliers, issues such as democracy and human rights play a significant role in their decision to supply weapons to Southeast Asian countries. For instance, Myanmar cannot import arms from the European Union (EU) because the country has been under an arms embargo since 1990. The 2014 military coup in Thailand also led to restrictions by many EU suppliers. The Cambodian Government’s banning of the political opposition in 2016 and the war on drugs in the Philippines have brought intense criticism from Western states. Amid these restrictions and scrutiny, Southeast Asian countries have turned to Russia seeking a supplier that is willing to offer major arms deals without asking questions about politics and human rights.

With its arms sales in Southeast Asia, “Moscow’s motives appear to be a combination of commercial and the perhaps disruptive, in the sense that any erosion of US or European defense interests is a de facto win,” Gavin Greenwood, an analyst with a Hong Kong-based security consultancy, A2 Global Risk, told VOA.

What does Russian involvement in Southeast Asia mean for China and the US?
Russia’s focus in Southeast Asia is not only on supplying arms, as Moscow has been pitching itself as a power with strong diplomatic muscle as well. Increased Russian involvement in Southeast Asia offers the region more diplomatic options when it comes to relying on international powers for military, political and other needs. With the South China Sea dispute fast becoming a major crisis between China and the US, Southeast Asian states are concerned that they will be forced to choose between the two. Russia “could become a negotiation chip for us with the US and China,” a source at the Indonesian Foreign Ministry told Nikkei Asian Review.

However, Russia’s growing involvement in the South China Sea dispute may complicate its bilateral relationship with China in the coming years.

Filipino President Rodrigo Duterte with Russian counterpart Vladimir Putin. Photo: / CC BY
Last year, Filipino President Rodrigo Duterte invited a Russian energy company to conduct oil and gas exploration in waters that the Philippines claims in the South China Sea. Beijing’s policy on gas and oil exploration projects in any disputed part of the South China Sea has been clear: “We urge relevant parties to earnestly respect China’s sovereign and jurisdictional rights and not do anything that could impact bilateral relations or this region’s peace and stability,” said China’s foreign ministry spokesman according to a Reuters story. Still, Russia’s state-owned oil company, Rosneft, has not halted its drilling operations in the disputed region. Similarly, the company is also working with the Vietnamese government on a number of gas exploration projects in the disputed maritime region.

So far, Beijing has not complained about Russia’s push into its traditional sphere of influence. “Although Russian diplomats have privately expressed concerns to their US counterparts that China may one day put pressure on Moscow to terminate those projects, so far Beijing has refrained from doing so because of the ever-closer strategic partnership between the two countries,” said Ian Storey, a regional security expert at Singapore’s ISEAS-Yusof Ishak Institute.

“It would be a serious blow to the burgeoning Sino-Russian entente if Beijing asked Moscow to end its energy projects in Vietnam.”

Recently, Indonesia decided against executing a plan to procure 11 Russian Sukhoi Su-35 jets due to fears of American sanctions. Since Russia annexed Crimea in 2014, the US has intensified sanctions on several major Russian state banks and corporations. These sanctions also target countries that sign major arms deals with Russia. On the part of the US, the move shows a “global effort to prevent its top adversaries from eroding the US’s military superiority,” noted Karlis Salna and Arys Aditya in an article for Bloomberg.

However, Washington has not been able to successfully deter all countries in Southeast Asia from buying Russian arms. For instance, the Philippines has stepped up its military relations with Russia despite a clear threat of sanctions from the United States. The Philippines is planning to sign a weapons deal with Russia, worth 400 million pesos, or US$7.48 million. However, the country “could find itself running afoul of US sanctions if it goes through with an arms purchase from a sanctioned Russian firm,” wrote Max Greenwood in The Hill.

Essentially, this means that Washington and Moscow are already competing in Southeast Asia and the ongoing power politics will significantly impact the region’s geopolitical landscape in the coming years.


Senior member
Dec 4, 2017

Russian Strategic and Hypersonic Naval Nuclear Weapons​


By Mark B. Schneider
November 18, 2020

(Russian Defense Ministry Press Service via AP)

Strategic Nuclear Weapons and the Russian Navy

Russia sets its highest value on its strategic nuclear forces. In November 2020, President Vladimir Putin stated, I want to emphasize that, despite the constantly changing nature of military threats, the nuclear triad remains the primary, key guarantee of Russia’s military security. From a broader perspective, this applies to global stability as well. Preserving this balance of power neutralizes the threat of a large-scale military conflict, making vain any attempts to intimidate or pressure our country.”
Russian attitudes about nuclear weapons are very rare in the world. In 2006, President Putin declared that the new Borei class ballistic missile submarine would “secure Russia’s glory as a great sea power.” Indeed, strategic nuclear forces are literally the highest priority of the Russian Navy. Talking about the “glory” associated with nuclear missile systems is uniquely Russian and reflects their world view concerning the role of nuclear weapons.

Russian naval nuclear strategy is a subset of what is contained in Russian military strategy documents. In 2017, President Putin signed into law a very important directive to the Russian Navy. Fortunately, this was translated into English by the Russia Maritime Studies Institute of the U.S. Naval War College. It dealt with the broad range of issues relating to the Russian Navy and its modernization, including nuclear weapons. It reflects Russia’s “escalate to de-escalate” (or “escalate to win”) nuclear strategy. Specifically, it says, “The key components of the strategic deterrence system are nuclear and non-nuclear deterrence. The general-purpose naval forces occupy an important place in meeting strategic deterrence challenges.” The Navy is directed to “maintain the combat potential of the naval strategic nuclear forces at a high level,” while stating that the first priority of the Russian Navy is “to modernize and maintain naval strategic nuclear forces at a high level as a part of strategic ballistic missile submarine groups.”
With regard to Russian SLBM targeting, Colonel General (ret.) Viktor Yesin, former Commander of the Strategic Missile Forces, has stated that Russian ballistic missile submarine missiles “…hit targets that do not have any serious protection, such as cities and enterprises…”[1] Since this statement was made in 2010, it is possible that Russia’s SLBM targeting may have expanded somewhat due to the introduction of improved Russian missiles.
In June 2020, Putin signed a decree on nuclear deterrence. Putin's decree contains four announced conditions for nuclear weapons use, all of which involve first use of nuclear weapons. It states:
19. The conditions which determine the possibility for the use by the Russian Federation of nuclear weapons are:
a. the receiving of creditable information concerning the launch of ballistic missiles attacking the territories of the Russian Federation and (or) its allies;
b. the use by an enemy of a nuclear weapon or other types of weapons of mass destruction against the territories of the Russian Federation and (or) its allies;
c. enemy actions against critically important state or military facilities of the Russian Federation, the disablement of which will lead to a disruption of retaliatory operations of the nuclear forces;
d. aggression against the Russian Federation involving the use of conventional weaponry which threatens the existence of the state itself.[2]
The condition on the use of nuclear weapons in response to non-nuclear attacks on “nuclear forces” rather than “strategic nuclear forces” in paragraph 19(C) opens up the possibility of a nuclear response to a non-nuclear attack on a vast number of Russian military facilities, airbases, naval ships and Army bases and units. This is because dual capability (conventional and nuclear capability) is almost universal in Russia.[3] Russia may use the threat of nuclear escalation to enforce rules of engagement on U.S. and allied forces that assure a Russian victory.
In August 2020, noted Russian journalist Pavel Felgenhauer warned, “The Kremlin is constantly playing the deterrence game by trying to scare the West. But this situation has two dangerous ramifications. First, the nuclear threshold is becoming lower: in any serious skirmish, the Russian navy would either need to go nuclear or risk being sunk. And second, while the Russian leadership believes it has surpassed the West militarily thanks to its dazzling superweapons, Moscow’s threshold for employing military force in conflict situations may also drop further.” Indeed, Putin’s new superweapons are all nuclear armed or nuclear capable. Felgenhauer, who has for over twenty years warned about the risk posed by Russian first use of low-yield nuclear weapons, continues to believe that Russia might use nuclear weapons in very limited conflicts.[4]

Russian Naval Strategic Nuclear Weapons

In late 2019, Russia revealed additional information concerning its programs for the development and deployment of strategic nuclear weapons. Prior to 2019, Russia had announced two programs for new (post-Cold War) ballistic missile submarines and two new ballistic missile programs for them – the new Borei and the improved Borei-A (955 and 955A or DOLGORUKIY-class) ballistic missile submarines carrying the new Bulava-30 SLBM and the Husky "fifth-generation" nuclear ballistic missile submarine carrying an unnamed new liquid fueled SLBM.[5] The first three Borei submarines reportedly used leftover components from never completed late Soviet-era submarines. The improved quieter Borei-A is apparently the submarine the Russians call 4th generation. It is two years behind the initial Russian projection of its operational availability.
In addition, Russia updated the legacy Delta-IV (Project 667BDRM) ballistic missile submarines with the improved SS-N-23 SLBM called the Sineva and the Liner (or Layner), which reportedly carry a larger number of warheads than the Cold War version. There is apparently also one Delta-III (Project 667BDR) submarine carrying the SS-N-18 SLBM still operational. It participated in the Grom-2019 large strategic nuclear exercise. One Project 941UM Akula (U.S. designator Typhoon) class SSBN, used for early Bulava-30 testing, is still in use.
In late 2019, the previous program of eight “fourth generation” Borei ballistic missile submarines was increased to ten by the addition of two more 955A submarines carrying 16 missiles each.[6] The hull of the 955A was modified for increased quietness. The Russian Defense Ministry also announced that the two new submarines were under contract and construction would begin in 2020. State-run Sputnik News claimed that the “Brand new Russian Borey-A and Yasen-M class submarines will become almost ‘invisible’ to hydroacoustic stations, the main means of submarine detection…” In 2010, Izvestia said that the Yasen was quieter than the U.S. Seawolf-class submarine. Claiming that Russian weapons are better than those of anyone else is almost the norm in Russia, irrespective of the fact situation. In 2014, Russian journalist Anton Valagin wrote, "…the Boreys are superior to the main strategic submarine of the U.S. Navy, the Ohio Class. Their noise levels are 93 and 102 decibels, respectively.” In November 2018, Maksim Klimov, a Russian journalist who frequently writes about the Russian Navy, citing foreign sources, said that “…our fourth-generation [submarines] lag U.S. Navy multipurpose nuclear submarines by not less than 10 decibels.” The Russians are clearly working on ways to reduce the detectability of their submarines, resulting in the erosion of the advantage that the U.S. and NATO had during the Cold War in submarine quietness.
We know a great deal about the Bulava-30 SLBM and the Borei submarine that carries it because it was declared as a six-warhead missile under the original START Treaty, and its technical data (including throw-eight) were automatically made public under the provisions of the START Treaty. According to Colonel (ret.) Robert Hawkins, Senior Fellow at the Los Alamos National Laboratory, the nuclear warheads it carries are “newly designed and newly manufactured warheads.” The Bulava-30 SLBM is generally reported as carrying 100-kt warheads (although there are sometimes higher numbers reported), and it has also been reported to carry a low-yield sub-kiloton warhead (as does reportedly the Sineva).[7] The low-yield weapon is clearly linked to Russia’s strategy of first use nuclear escalation, which is critical for the U.S. to deter. The development of an advanced version of the Bulava-30 has also been announced. The Russian press frequently reports that the Bulava-30 carries ten maneuvering hypersonic warheads. This is unlikely in light of its limited throw-weight (1,150-kg). At some point, some type of maneuverable warhead (MaRV) may appear, but it really makes no sense in relation to existing and projected U.S. strategic missile defenses. (It would be good against the Moscow ABM system, which uses short-range interceptor missiles that operate in the atmosphere.)
In 2019, state-run TASS reported that Russia might develop and deploy two Borei-K strategic cruise missile submarines after 2027. In 2018, TASS said that Russia planned 14 Borei ballistic missile submarines. In light of the later TASS report about the Borei-K and the financial restraints on the Russian Defense Ministry, it is unclear whether they will be able to build more than seven Borei-As. At this point, it does not look likely that Russia will go ahead with the reported Borei-B class submarine, although we can't rule this out. It does seem clear that Russia wants 14 modern strategic nuclear missile submarines. The actual timing of the construction of the Husky “fifth-generation” submarines may impact the number of Borei submarines constructed.
By Husky “fifth-generation” nuclear submarines, Russia does not literally mean fifth-generation (by some counting rule for what constitutes a generation); rather, it means an advanced design which will be very quiet with high speed and deep diving capability. We know a lot less about the Husky than we do about the Borei because of Russian secrecy, although the Russian Defense Ministry continues to brag about it. It is reportedly capable of carrying both ballistic and cruise missiles and Tsirkon hypersonic missiles. The head of Russia’s United Shipbuilding Corporation said the Husky would appear in the late 2020s. Vice Admiral Viktor Bursuk, Russian Navy Vice Commander for Armaments, said, "The fleet will start getting fifth-generation submarines around the 2030s.” There are reports that there will be strategic and multirole versions of the submarine and some reports that it will combine both functions. Interfax says that “materials circulated in the run-up to a Russian Federation Council meeting on shipbuilding” said that, “The Husky submarine design reportedly will use modules with anti-ship and ballistic missiles.”

The Poseidon Nuclear-Powered, Nuclear-Armed Drone Submarine

Russia is developing a nuclear-powered, nuclear-armed ultra-deep diving drone submarine. The early Russian press reports said the Poseidon had a yield of 100 megatons. Pavel Felgenhauer stated, “The plan is to deliver a 100-megaton nuclear bomb to the U.S. shores.” The Russian government daily Rossiyskaya Gazeta said that the weapon could achieve “extensive radioactive contamination” and the weapon “could envisage using the so-called cobalt bomb, a nuclear weapon designed to produce enhanced amounts of radioactive fallout compared to a regular atomic warhead.”[8] A cobalt bomb is a “doomsday” weapons concept conceived during the Cold War but apparently never actually developed.[9] It intensifies the duration of deadly radioactive fallout.[10]

Russian Naval Hypersonic Missiles

While nearly all ballistic missiles have hypersonic speed, what is now generally called “hypersonic missiles” are missiles designed to operate in the atmosphere at hypersonic speeds (Mach 5 and above) and, thus, they can maneuver at any time it is desired to do so. This makes them even more difficult to intercept than ballistic missiles. Since they fly in the atmosphere, the detection range of missile early warning radars is reduced.
In January 2020, in an apparent reference to his new hypersonic missiles, President Putin told the Russian Duma that, “For the first time ever – I want to emphasize this – for the first time in the history of nuclear missile weapons, including the Soviet period and modern times, we are not catching up with anyone, but, on the contrary, other leading states have yet to create the weapons that Russia already possesses.” Putin also boasted that other than Russia, “Not a single country possesses hypersonic weapons, let alone continental-range hypersonic weapons.”
Except for the Avangard boost-glide vehicle, which is carried on the legacy Soviet SS-19 ICBM, the classification of Russia’s hypersonic missiles as “strategic” or “non-strategic” is somewhat arbitrary. Much depends on how they are used and what platforms carry them. Russia’s non-strategic missiles are almost entirely dual-capable (nuclear or conventional). At least half of Putin’s six new nuclear superweapons -- the Avangard, the Kinzhal aeroballsitic missile (2,000+ km range), and the Tsirkon hypersonic missile (1,000+ km range) with a maximum speed of Mach 9 -- are the new officially announced hypersonic missiles, and they are all reportedly nuclear armed or nuclear capable.[11] In October 2020, Russia began launching Tsirkon (Zircon) hypersonic missiles from warships. Although this has not been officially claimed, there are some reports that Russia’s nuclear-powered 9M730 Burevestnik, one of Putin’s nuclear superweapons, is a hypersonic missile. There is also reportedly a smaller version of the Kinzhal for the Su-57 fighter. Additionally, Russia is reportedly developing the KH-MT, a “ram-jet powered hypersonic design apparently intended for internal carriage [on the Tu-95MSMbomber].”[12] In particular, the Kinzhal and the Tsirkon are capable of both land-attack and antiship strikes. For several years Russia has had the near hypersonic Kh-32 cruise missile operational on its Backfire bombers.
In December 2019, Russian Deputy Defense Minister Aleksey Krivoruchko said, “Hypersonic weapons prototypes are created to use them with both air [Kinzhal system], and land and sea carriers [Zircon]. The development of crucial technologies that provide an increase in flight speed — to more than Mach 10 — range, and precision pointing continues.(Emphasis in the original). For an “aeroballistic” missile like the Kinzhal, increased speed means longer range. For a powered hypersonic missile like the Tsirkon, this might increase the range. A retired Russian Admiral has stated that the range of the Tsirkon is 2,000-km. This is probably a reference to an improved version of the Tsirkon. Since the Russians are attempting to scare us, they frequently attribute the characteristics of improved versions of their weapons to the first generation.
Today, we have no defenses against hypersonic missiles. This is because the Third-World (North Korea and Iran) focus of U.S. missile defense has resulted in no U.S. effort to defend against the Russian threat until very recently. The conventional wisdom is that Russia has developed hypersonic missiles to penetrate U.S. strategic missile defenses. This is not the case. Indeed, the most senior Russian leaders have stated that they have no problem penetrating U.S. strategic missile defenses. There are much cheaper means to penetrate them than hypersonic boost-glide weapons. Indeed, the Soviet version of the SS-19 ICBM will get more warheads through U.S. missile defenses than the same number of SS-19 carrying a single Avangard. This is because the Soviet SS-19 was heavily MIRVed and carried extensive missile defense countermeasures. State-run Sputnik News says the Bulava-30 SLBM “can deploy up to 40 decoys to try to divert defensive missiles fire[d] by anti-ballistic missile systems like the Alaska-based Ground-based Midcourse Defence system.”
Highly capable destroyers and cruisers and the carriers they defend with advanced air defense weapons and sometimes ballistic missile defense capability are probably the most important non-strategic targets for hypersonic missiles. Their extremely high velocity probably gives them a significant advantage against such targets compared to any other type of anti-ship missile. This is particularly true with regard to penetrating short-range defenses. The same would be true concerning advanced land-based SAM systems, although unfortunately, they are few and far between in NATO. The Russians are now beginning to deploy terminal defense laser weapons. Hypersonic missiles are likely to be more effective against such a defense.
General John Hyten, then-commander of the U.S. Strategic Command, has warned about the threat posed by Russian hypersonic weapons if the U.S. does not counter them. He said that hypersonic weapons would allow Russia to attack on a global basis with little or no warning. General Hyten noted that a hypersonic missile "disappears, and we don't see it until the effect is delivered."[13] While with a ballistic missile, General Hyten stated, it would take 30 minutes to strike a target with a hypersonic weapon, "it could be half of that."[14] Thus, capability against time urgent targets is one of the most important advantages provided by Russian hypersonic missiles. The Tsirkon hypersonic missile will be carried by a broad range of Russian surface ships and submarines, including the 885/Yasen class submarines, which a 2017 Defense Intelligence Agency report on Russia Military Power characterized as “extremely quiet.” Russia also has an improved Yasen-M submarine. The Tsirkon will be widely deployed on Russian surface ships and submarines, including the advanced Yasen class multirole submarine. Existing Russian launchers for Kalibr and Oniks cruise missiles can reportedly launch the Tsirkon.
A major target for Russian strategic nuclear hypersonic missiles or, indeed, nuclear-armed non-strategic hypersonic missiles like a Tsirkon launched from a Yasen-class submarine would likely be the U.S. National Command Authority because of its very important association with command and control authority over U.S. nuclear weapons use. Use of Russian hypersonic weapons against the U.S. National Command Authority was hinted at by President Putin in his 2018 State of the Nation Address to the Duma, reported on by Russian state-run television which contained a “list of American targets” that “the Kremlin could strike with hypersonic nuclear missiles within five minutes if war breaks out,” and this was overtly talked about by the Chief of the General Staff General of the Army Valeriy Gerasimov who said that Russia would be forced to “plan future delivery of strikes against decision making centers…” These weapons would also be useful for surprise attacks against bomber and missile submarine bases. While existing Russian subsonic cruise missiles could also be used for such attacks, the probability of surprise and success would likely be much greater with hypersonic missiles.

Does Russia have an accuracy problem with its hypersonic missiles?

Army Chief of Staff General James McConville, when asked if he thought Russian hypersonic weapons were “game changing,” replied, “No, I don’t. I have not seen them actually hit a target with that system, and I know where our [hypersonic] technology is.” This is the first indication of a Russian accuracy problem by a senior Defense Department official. According to TASS, if “that system” is the Avangard, it is armed with a 2-megaton nuclear warhead. If “that system” is the Kinzhal or the Tsikron (Zircon), it is dual-capable. Ultra-high accuracy regarding the Avangard is not necessary against any likely target of a very high-yield nuclear silver bullet force, which is what the Avangard is. For the Kinzhal and the Tsirkon, which have conventional and nuclear options, accuracy is much more important.
There is some open source evidence that Russia is exaggerating the accuracy of its new supposedly precision cruise missiles. While Russian military leaders frequently claim accuracy of a few meters or at least under ten for their new precision systems, some Russian journalists have reported much less accuracy. For example, Russian journalist Igor Kozin, writing in Russian state media, reported 5 to 50 meters accuracy (presumably CEP) for the Kh-101 long-range air-launched cruise missile and 30 meters for the Kalibr sea-launched cruise missile. Similarly, Colonel (ret.) Nikolai Litovkin, also writing in state media, said that the Kalibr had an accuracy of 30 meters. Thirty meters is usually assumed as the threshold of near precision accuracy, but it does not necessarily equate to one missile, one target destroyed with conventional weapons. This is particularly true with regard to hard targets, in which case very high accuracy is necessary.
We must remember that these Russian missiles are not conventional missiles; they are dual-capable. Against most targets, if nuclear weapons are used, it matters little if Russia’s missile CEP is 5 or 50 meters. Keep in mind that until the B-61 Mod 12 bomb becomes operational, there will literally be no precision or near precision nuclear weapons in the U.S. nuclear deterrent force. Against most target types, nuclear weapons use does not require precision or near precision accuracy to destroy them. Against some targets, a CEP of 50 meters might rule out the use of the lowest yield nuclear missile warheads reportedly available to the Russians, which in turn could impact collateral damage. In its initial use of nuclear weapons, Russia would certainly attempt to limit collateral damage. However, if the Russians reached the stage of nuclear targeting of the U.S. National Command Authority, they would probably be beyond the point where they were worried about collateral damage.
Anti-ship missiles targeting ships at sea require some type of terminal guidance to hit them with any type of warhead. Warships are comparatively large targets. Assessing the probability of destruction against a warship is different than simple CEP calculations against land-targets. The Russians have made it clear that the Kinzhal, the Tsirkon, and the near hypersonic Kh-32 have an anti-ship role, and they are all reportedly nuclear capable. There is little or no open source information about the degree of realism in Russian testing of its anti-ship missiles. Hypersonic missiles get to their targets far faster than sub-sonic cruise missiles, making it easier for these missiles to acquire their intended targets.
If the Russians do not have sufficient accuracy for precision conventional strikes with their hypersonic missiles and are producing large numbers of them in the coming years, a high percentage of them may be nuclear-armed.


It is clear that Russia has substantially improved its naval strategic nuclear capability and will continue to improve it for the foreseeable future. With the announced Russian deployment dates, even assuming the normal Russia availability slippage, all of the Borei class submarines will be in service before the initial deterrent patrol by the first U.S. Columbia class submarine in 2031. The Husky might be available in the same time frame as the Columbia. Russia has apparently closed much of the gap between the quietness of Cold War Soviet and U.S. submarines. Moreover, there are likely to be multiple modernizations of the new Russian SLBMs before the U.S. introduces the Trident D-5 SLBM replacement missile, which is now to be a life extension version of the current missile.
We need both deterrence and active defenses against Russia’s hypersonic missiles. One is not a substitute for the other. Right now, we are playing catch up in hypersonic missiles, and there are no announced programs for a nuclear-capable hypersonic missile. There has been a substantial increase in conventional hypersonic missile funding, but funding is still limited for defenses against hypersonic missiles. This should be of great concern.


Sep 18, 2019
Actually some of the tools the fire eye used 3rd party tools lilke cobalt strike and sling shot, also they used somnay open source project for enumartion, funny part is before fire hack almost main tools like core impact, and cobalt strike already well known in Russian hacker forums, they obtain these tools and resell for 5- 10k per license,
  • Like


Senior member
Mar 15, 2018
Some one stole comm equipment from russian planes.

Next time there is a missile attack on terrorists expect them to be hiding in bunkers. :ROFLMAO:
May be chinese or western powers are behind these, where can they even sell these equipment any way.
Actually some of the tools the fire eye used 3rd party tools lilke cobalt strike and sling shot, also they used somnay open source project for enumartion, funny part is before fire hack almost main tools like core impact, and cobalt strike already well known in Russian hacker forums, they obtain these tools and resell for 5- 10k per license,
seriously why do they even pay for it, when they can hack it. I am unable to understand that there is this honor among thieves.


Senior member
Dec 4, 2017


The Tundra missile early warning satellite. Source

EKS: Russia’s space-based missile early warning system​

by Bart Hendrickx
Monday, February 8, 2021​

Comments (0)
Bookmark and Share

In May of last year, Russia launched the fourth of its new-generation missile early warning satellites called Tundra. Flying in highly elliptical orbits, they continuously monitor regions from which missile attacks could potentially be launched against Russian territory. The Tundra satellites are part of the Integrated Space System (EKS), which will also include several satellites in geostationary orbit. With the fourth Tundra launch, EKS is reported to have reached its minimum baseline configuration. This article attempts to shed new light on the system’s technical features and capabilities using a variety of openly available sources.

Predecessors of EKS​

The Soviet Union began working on early warning satellites in the early 1960s, but initial plans for low-orbiting satellites were abandoned in favor of a constellation of satellites in highly elliptical orbits (HEO) that ultimately did not see its first launch until 1972. The satellites (designated US-K) flew in orbits similar to those used by the country’s Molniya communications satellites, but configured such that they could keep an eye on ICBM fields in the continental United States. Since the Soviet-era sensors had trouble seeing missile plumes against the background of an illuminated Earth, the US-K satellites observed the ICBM fields under a grazing angle from their apogees over the northern Atlantic Ocean, allowing them to spot missiles against the backdrop of space as soon as they rose above the horizon. Some of the first-generation satellites were also placed into geostationary orbit (GEO) over the Atlantic to provide back-up capability.

A combination of first and second-generation satellites continued to be launched until early last decade, relying largely on a stockpile of hardware left over from the Soviet days.
One disadvantage of this viewing geometry was that the satellites could easily be blinded by the light of the setting Sun. This triggered at least one false missile attack alarm in September 1983, which fortunately enough was recognized as such by the officer on duty at the Soviet ground control station. When the incident was disclosed after the end of the Cold War, the duty officer (Stanislav Petrov) received several international awards for his role in averting a nuclear catastrophe. Still, the alarm could well have been called off higher up in the chain of command in the absence of corroborative data from ground-based early warning radars.

A second generation of early warning satellites (US-KMO), introduced in 1991, was designed to provide global coverage from geostationary orbit. Equipped with upgraded sensors, they were capable of seeing missile launches against the background of Earth, including submarine-launched ballistic missiles. However, many of the satellites failed early and there were some reports claiming that their sensors performed below expectations.

The prime contractor for the first two generations of space-based early warning systems was TsNII Kometa (renamed the Kometa Corporation in 2012), which carried out the same role for Soviet ocean reconnaissance satellites and anti-satellite projects. The actual integration of the satellites was in the hands of NPO Lavochkin, which has also built all the country’s planetary and lunar probes. Payloads were infrared scanning sensors of the Vavilov State Optical Institute (GOI) and infrared television cameras (so-called “staring sensors”) of the Scientific Research Institute of Television (NIIT). The scanning sensors could scan wide fields of view to detect missile launches and the more sensitive staring sensors were better at zooming in on targets and determining their trajectories.[1]

The birth of EKS​

A combination of first and second-generation satellites continued to be launched until early last decade, relying largely on a stockpile of hardware left over from the Soviet days. The economic crisis that engulfed Russia in the 1990s made it impossible for the country to initiate any new early warning satellite projects until the turn of the century. In 1999, plans were announced for a new constellation of early warning satellites known as the Integrated Space System (EKS), which would consist of both HEO and GEO satellites. Kometa was again assigned as prime contractor, receiving a contract for EKS from the Ministry of Defense on March 15, 2002. Several companies appear to have vied for the role of satellite manufacturer, including NPO Lavochkin and the Khrunichev Center. However, on March 18, 2004, Kometa’s choice fell on RKK Energiya, the former Korolyov design bureau, best known as a manufacturer of space stations and the Soyuz and Progress spacecraft.[2]

EKS is also known by the military index 14K032 and has recently also been referred to by several officials as Kupol (meaning “dome”). These are names for the entire system, comprising not only the HEO and GEO satellites, but also the ground control segment, the launch vehicles and cosmodrome infrastructure. The HEO satellites are called Tundra and have the military index 14F142. No names or indices have so far been given for the GEO satellites.

The Tundra satellites​

A fairly good understanding of Tundra’s design can be obtained from a number of sources, some more elusive than others. Kometa has even released one picture and at least three drawings of the satellite and although these were not specifically identified as showing Tundra, the project clearly has a somewhat lower classification level than many other Russian military space projects (the same, incidentally, applies to American early warning satellites).


The only publicly available picture of a Tundra satellite, published in a Kometa article in 2017. Source
The Tundra satellites are launched into Molniya-type orbits by Soyuz-2.1b rockets with the Fregat upper stage from the Plesetsk Cosmodrome in northwestern Russia. They have a service module (or “bus”) referred to in RKK Energiya publications as the Universal Space Platform (UKP) or Viktoriya, derived from that used by the company’s Yamal communications satellites. This is a three-axis stabilized platform that can be tailored for flights in Sun-synchronous, highly elliptical, and geostationary orbits, which may have been a decisive factor in selecting RKK Energiya as the satellite manufacturer. Unlike Soviet satellites, the UKP platform does not use a pressurized compartment to provide a controlled environment to the on-board electronics. The dry mass of the UKP bus ranges from 950 to 1,200 kilograms. The payload mass for HEO satellites is between 500 and 1,000 kilograms and for GEO satellites between 250 and 300 kilograms. The design lifetime is given as at least 7.5 years for the HEO satellites and up to 12.5 years for the GEO satellites. This is probably due to the fact that HEO satellites regularly pass through the Van Allen radiation belts.[3]

Unlike their Soviet predecessors, the Tundra satellites should have enough computing power to do much of the data processing on board, allowing operators on the ground to make swift recommendations to the country’s leadership.
Little is known about the specific adaptations made to Tundra’s service module. It may have the index 14S022, which shows up in some documentation related to EKS and is linked to a “combined engine unit” (a term usually used for a liquid propellant engine system), star trackers and reaction wheels.[4]

Much more information is available on Tundra’s payload module (known by the Russian acronym MTsA). Two exploded views of the module show the general layout of its systems.


Exploded view of Tundra’s payload module. Source

Another exploded view of Tundra’s payload module released by Kometa in 2019.
It consists of two sections designated “A” (the lower section) and “B” (the upper section). The structural frame, honeycomb panels, and radiators are provided by NPO Lavochkin.[5] Mounted on the upper section are at least two (and probably four) arrays of electric thrusters. These are known to be SPD-100 Hall-effect ion thrusters (called “stationary plasma thrusters” in Russian terminology) of OKB Fakel that have flown on many Russian and non-Russian satellites. Weighing 3.5 kilograms, each of the engines has a thrust of 83 millinewtons and a specific impulse of 1600 seconds. [6] They probably assist in countering some of the perturbations to which Molniya-type orbits are susceptible due to the oblateness of the Earth and gravitational effects from the Moon and the Sun.

Extending from the payload section are a number of antennas used for a variety of functions. One is a set of satellite navigation antennas (ASN) manufactured by the Yaroslavl Radio Factory that should help accurately determine the satellites’ orbital parameters.[7] Also seen are steerable and phased array antennas of the On-Board Radio Communications System (BRTK) and low-gain and high-gain antennas of the On-Board Control and Data Transmission System (BKUPI). These systems are likely used to process the data gathered by the payload and send it to Earth.

Unlike their Soviet predecessors, the Tundra satellites should have enough computing power to do much of the data processing on board, allowing operators on the ground to make swift recommendations to the country’s leadership on the need to activate anti-ballistic missile systems or launch a retaliatory strike. The satellites may also be integrated into the communication network needed to ensure a quick response to a missile attack. According to some sources, the full name of EKS actually is the “Integrated Space System for Detection and Battle Management” (EKSOiBU), because it combines the missile detection functions performed by early warning satellites and some of the strategic communications functions of the earlier Molniya-type communications satellites. A key player in the development of these systems appears to be NPO Impuls, a company whose core business is to supply automated battle management systems to the Strategic Missile Forces. NPO Impuls signed a contract with Kometa for EKS on August 1, 2007, and related documentation refers to onboard systems called 15E1827, 14R735, and 15N1953 that include at least one computer. Some of the work seems to have to do with the protection of downlinked and/or uplinked information.[8]

The payload itself is called the On-Board Detection Equipment (BAO) and occupies both sections of the payload module, with a sun shade mounted on the upper part to prevent stray light from entering the telescope. Nothing has been officially revealed about the nature of the payload, but one document related to EKS refers to a system called Irtysh-E with what is literally called a “wide-angle channel” and a “narrow-angle channel”.[9] This is almost certainly a modified version of the dual-channel Irtysh infrared telescope conceived at the NIIT institute in the late 1980s for the second-generation US-KMO satellites. Irtysh was outfitted with cryogenically cooled video camera tubes (vidicons) of TsNII Elektron that were more sensitive than the uncooled vidicons flown on the first-generation satellites. They should have been able to detect missile launches against any type of background, but for some reason the US-KMO satellites only carried infrared scanning payloads.


The Soviet-era Irtysh telescope. Source
Despite the rapid advance of lightweight solid-state image sensors (particularly CCDs), it is clear that plans to fly Irtysh were not given up even after the turn of the century. A NIIT article published in 2015 said its development had been dragging on for 30 years, a sure sign it was still under development at the time.[10] Furthermore, Kometa and TsNII Elektron signed a contract for the delivery of vidicons for EKS on July 2, 2001, which was even before the official start of the project. The vidicons are designated LI489E and are manufactured under a joint effort between the two companies known as Kater-3E.[11] LI489E is described in one TsNII Elektronika paper as being based on so-called A3B5 semiconductors and capable of operating at wavelengths up to 3 microns.[12] It had a forerunner called LI489 which can be traced to a Soviet early warning satellite program of the 1980s based on a PhD dissertation on infrared vidicons published in 2001.[13] In short, there is ample evidence that Irtysh-E and LI 489E are modernized versions of identically named hardware developed in the early 1980s, with the letter “E” added to indicate it was adapted for EKS.

There are strong indications that the geostationary satellites will be equipped with a new payload.
So why did the Russians decide to stick to this seemingly outdated technology? The aforementioned PhD dissertation claims that cryogenically cooled infrared vidicons still have a better performance than solid-state sensors, are cheaper to produce, and can better withstand radiation, singling out the LI489 vidicon as an example of that. On the other hand, a Kometa paper published in 2016 said the further development of infrared vidicons for “space-based detection systems” had been terminated because they don’t meet today’s requirements for “reliability, mass and size” and also because of their insufficient sensitivity and the low number of pixels used.[14]

Irtysh-E’s two “channels” should allow the telescope to operate in both wide-angle and narrow-angle mode. The optical instruments needed for this are provided by a daughter company of Kometa called the Scientific Research Institute for Optical and Electronic Instrument Building (NII OEP). Photographs of these instruments were available on Kometa’s website until recently.


Narrow-angle (left) and wide-angle optical systems of the Irtysh-E camera. Source: Kometa website.
The payload has a cryogenic cooling system developed by the Nudelman Design Bureau of Precision Engineering (KB Tochmash), also known for its involvement in several anti-satellite projects. A press release that appeared on the company’s website in October 2017 noted that the system had been successfully tested on the second Tundra satellite.[15] Publicly available annual reports of KB Tochmash refer to the system as SGO-RF. A patent filed by KB Tochmash in 2016 describes a space-based cooling system that almost certainly is the one designed for Tundra. It has two so-called Stirling closed-cycle cryogenic coolers that maintain the cooling agent (argon) at the proper temperatures. The two cryocoolers are used in turn and activated only when the TV camera is not operating so that any vibrations they may cause do not hamper the observations. They each have a design lifetime of 10,000 hours and should ensure that the payload remains operational for seven to ten years.[16] The cooling system is not seen in the exploded views, but should be installed in the lower section of the payload module.


Schematic representation of Tundra’s cryogenic cooling system from a 2016 patent. The two Stirling cryocoolers are in positions 2 and 10, the cryostat (containing argon) in position 1 and the imaging detectors in position 5. Source
A secondary payload for Tundra is called Balka and is produced by the Scientific and Industrial Corporation “Precision Instrument Systems” (NPK SPP). An article in a corporate newsletter of NPK SPP describes its successful testing on the first Tundra satellite, but does not reveal its purpose.[17] As can be determined from another source, Kometa awarded a contract for Balka (also referred to as “Product 16”) to NPK SPP on July 1, 2000 (again, before the official start of EKS), and the instrument has photodetectors called A-181A and A-181B developed by NPP Pulsar.[18]

The same detectors are also part of NPK SPP payloads flown on Russia’s Glonass navigation satellites that are named BAL-M (for Glonass-M), BAL-K (for Glonass-K), and BAL-K2 (for Glonass-K2). Their main purpose is to monitor the observance of nuclear test ban treaties by looking for signs of nuclear explosions. They perform the same role as the Nuclear Detection System flown on America’s GPS/Navstar satellites and the Defense Support Program (DSP) early warning satellites. Russia has clearly followed the same path by installing such sensors both on its navigation and early warning satellites. According to one article published by NPK SPP, another goal of the payloads is to observe gamma ray bursts, cosmic and galactic radiation, corpuscular radiation emitted by the Sun, lightning, volcanic activity, and “technogenic catastrophes”.[19]

The overall name of the Glonass-based nuclear detection system, which also has a ground-based segment to receive the information, is Lira-M. The name of the EKS-based system may be Altair.[20] One paper published in 2013 said the two systems would be integrated with ground-based nuclear detection systems of the Strategic Missile Forces. The EKS payload was supposed to include a gamma-ray detector and two optical detectors operating in slightly different wavelengths. It would use more efficient communication channels and be more advanced than the Glonass-based system, allowing a single satellite to determine the coordinates of a nuclear blast with high accuracy. The paper referred to both the HEO and GEO satellites, suggesting the nuclear detection payloads will be carried by both.[21]

The geostationary satellites​

The geostationary EKS satellites will be launched from Plesetsk by the Angara-A5 rocket. Development of the Angara launch vehicles began right after the collapse of the Soviet Union with the aim of replacing the venerable Proton rockets that can fly only from Baikonur in Kazakhstan. After years of delays, the Angara-A5 made its inaugural flight in December 2014, after which it took another six years to launch the second one. Both rockets placed dummy payloads into geostationary orbit using the Khrunichev Center’s Briz-M upper stage, which uses storable propellants. However, the geostationary early warning satellites will require the use of a new upper stage called 14S48 or Persei, which is a modified version of RKK Energiya’s Blok-DM-03 upper stage burning liquid oxygen and kerosene. The Angara infrastructure at Plesetsk has been modified to support launches of the geostationary early warning satellites with the new upper stage.[22] One source told the TASS news agency in May 2016 that a single Angara-A5 could orbit “two to three” early warning satellites, but two would be the absolute limit considering the payload capacity of the Angara-A5 from Plesetsk.[23]

The deployment of the geostationary EKS constellation will require the expansion of the ground control network.
There are strong indications that the geostationary satellites will be equipped with a new payload. Unlike the vidicon-based staring sensor carried by the HEO satellites, this will be a scanning system with a new generation of infrared detectors. Work on new infrared detectors for EKS got underway on August 1, 2012, with a contract signed between the Ministry of Defense and Kometa for a research and development project called Kosmos-IK1 (“IK” is the Russian abbreviation for “infrared”). One document links this project to “the complete EKS constellation“ as well as the project’s “third phase”, which in other documentation is associated with the geostationary satellites.[24]

The research work resulted in Kometa awarding a contract for the new detectors (known as Granat-128) on November 28, 2016, to NPO Orion, which also supplied the infrared detectors for the scanning payloads on the first- and second-generation early warning satellites. Some documents related to this contract refer to “the complete EKS constellation”. The Granat-128 detectors appear to be the subject of several technical publications by NPO Orion (although they are not mentioned there by name). They are mercury cadmium telluride (HgCdTe) detectors with a 1024x10 pixel array. The spectral range is given both as 1–3 microns and 2–3 microns.[25]


Picture of what likely is the Granat-128 infrared detector. Source
NPO Orion and a company named NPP Vostok also act as subcontractors to Kometa for producing infrared detectors with larger pixel arrays under research projects called Progress and Komplekt-1 that were initiated in late 2015. However, this research was ordered not by the Ministry of Defense but instead by Roskosmos, and is probably unrelated to EKS. At least one of the detectors is said to be intended to provide “a global view of Earth, near-Earth space and distant space”, but as of now they cannot be tied to any specific satellite projects.[26]

The optical part of the EKS scanning payload is presumably described in an article written in 2016 by Kometa specialists, some of whom are veterans of the Vavilov State Optical Institute (GOI) that built the infrared scanning systems for the Soviet early warning satellites. The article says the scanning system is intended for “Earth monitoring in the interests of national surveillance” and compares it to the scanning sensor flown on the latest generation of American early warning satellites (SBIRS: Space-Based Infrared System). It refers to a paper on NPO Orion’s 1024x10 infrared detectors. The new scanning payload uses a readout technique called “time delay integration” (TDI) and has a beryllium mirror coated with gold to improve reflection in the infrared range. It has a global view and can scan the Earth’s disk in 4.2 seconds. [27]


Infrared scanning payload for EKS. The scanning mirror is seen in position 3. Source
Future EKS satellites may also carry an ultraviolet payload, although it is not known if this is specifically intended for the geostationary satellites. A handful of papers published by TsNII Elektron in 2014 to 2016 said that EKS was one of several programs to use UV photodetectors built by the company under a research project known as Fotik-4. The CCD-based photodetectors (called FPU-4P and FPU-4A) have 768x580 and 1024x1024 pixel arrays and operate in the UVC part of the ultraviolet spectrum, which is almost completely absorbed by the ozone layer. This means that such sensors (also called “solar-blind photodetectors”) can easily spot missile plumes due to the absence of a terrestrial background signature. One of the papers also mentions the possibility of using them to detect hypersonic vehicles. The Fotik-4 project ran from 2011 to 2014, but so far there is no evidence that its results were implemented in the EKS project. Another ultraviolet instrument with a probable missile detection role was concurrently developed under a secretive Roskosmos project named UFIK, which is not known to have any ties with EKS [28].

Other work related to the third phase of EKS is called LSS-GSO and involves a system called 15E1818 developed jointly by NPO Impuls and NPK SPP.[29] This could well be a laser communications system to be used for intersatellite links and/or high-speed downlink of data (with “LSS” and “GSO” being the likely Russian abbreviations for “laser communications system” and “geostationary orbit”). NPK SPP is no newcomer to that field, having already built a laser communications system to beam data from the Persona optical reconnaissance satellites to the Geyzer military data relay satellites. One potential use of the system could be for the satellites to quickly exchange data obtained by their nuclear detection payloads. An earlier mentioned paper on the nuclear detection payloads (see source 21) noted that an intersatellite laser communications system would be a possible way of increasing the accuracy of the observations.

The deployment of the geostationary EKS constellation will require the expansion of the ground control network. This currently relies on a ground control facility near Kurilovo some 70 kilometers southwest of Moscow. Built back in the Soviet days, it is known as the “Western Control Station” (ZÐœKP) and the place where it is situated is also known as Serpukhov-15. It actually consists of two ground control stations located about one kilometer from each other. One (called “Object 455”) was originally constructed to track the HEO satellites as they reached their apogee over the Atlantic and the other (named “Object 455I”) to control GEO satellites stationed over the Atlantic. Both were upgraded in the past few years to support the EKS program and are together referred to as “Object 455/E”.[30]


The two ground control facilities of “Object 455” at Serpukhov-15, each of which has several radomes. The site on the right was originally built for the Soviet HEO early warning satellites and the one on the left for GEO satellites. Source: Google Earth.
The geostationary constellation should also include one or more satellites to keep an eye on the Pacific region, which is an important patrol zone for America’s Trident II submarine-launched ballistic missiles. These satellites will not be visible from Serpukhov-15 and will have to rely on an Eastern Control Station (VÐœKP), also known as “Object 485”, near Gaiter in the Khabarovsk region in Russia’s Far East. This was constructed to support the second-generation geostationary satellites, but was never used to full capacity at the time. Work to modify the facility for EKS (under the name “Object 485/E”) was ordered in 2013, but recently published documentation indicates it has not yet been finished.[31]

Deploying the EKS constellation​

As for most of Russia’s new-generation military satellites, the road to the launch pad for EKS turned out to be long and arduous. The earliest announced plans called for the launch of the first HEO and GEO satellites in 2007 and 2009, but these and many later target dates went by without any launches. The numerous delays in the EKS program left Russia’s early warning network without any operational satellites following the retirement of the final first-generation and second-generation satellites in 2014.

Ozar also disclosed that the EKS constellation had reached its “minimum baseline configuration”, suggesting the four satellites can ensure round-the-clock coverage of the most critical areas.
The first EKS/Tundra satellite, officially announced as Kosmos-2510, was finally launched from Plesetsk on November 17, 2015. Three more launches followed on May 25, 2017 (Kosmos-2518), September 26, 2019 (Kosmos-2541) and May 22, 2020 (Kosmos-2546). The satellites were all placed into highly elliptical 12-hour Molniya-type orbits with perigees ranging from about 1,400 to 2,000 kilometers, an apogee around 38,000 kilometers and an inclination of about 63 degrees. The satellites have two daily apogees during which they spend several hours hovering high above the Northern hemisphere. One is located approximately over Greenland and the other above Russia’s Far East. Since the eastern control center for EKS does not appear to be ready yet, the satellites probably only perform observations from the “western” apogee. This is situated farther to the west than that of the Soviet HEO satellites. Apparently, they are capable of detecting missile launches from both the North American continent and the Atlantic Ocean against the background of Earth. This is corroborated by a statement from RKK Energiya general director Igor Ozar, who said last August that the HEO satellites can see ballistic missile launches from both continents and oceans.[32]


Ground track of the first Tundra satellite. Source: Novosti Kosmonavtiki magazine.
Ozar also disclosed that the EKS constellation had reached its “minimum baseline configuration”, suggesting the four satellites can ensure round-the-clock coverage of the most critical areas. Late last year, Defense Minister Sergei Shoigu announced that with the fourth launch the second phase of the deployment of EKS had been completed.[33] According to a Kometa article published in 2017, the first phase had ended in late 2015, indicating that its objective was to complete in-orbit tests of the first satellite.[34]

Even though the third phase has been associated with the geostationary satellites, it is clear that more of the HEO satellites will be launched in the coming years. In an announcement on the first Tundra launch in November 2015, the Ministry of Defense said the ultimate goal was to have a constellation of ten satellites, a number also mentioned by a handful of other sources.[35] According to a source quoted by the TASS news agency in February 2017, all these satellites would be orbited by the Soyuz-2 rocket, meaning this number does not include any of the geostationary satellites.[36] This amount of satellites would make it possible to prevent gaps in coverage due to the loss of a single satellite and reduce the risk of false alarms by simultaneously monitoring the same area from different satellites. In the Soviet days, the maximum amount of simultaneously operating HEO satellites was nine.

The geostationary satellites are clearly lagging far behind. One source told the Interfax news agency in May 2016 that they had not yet been manufactured and information provided in RKK Energiya’s annual report for 2017 suggested that the satellites (misleadingly called “geostationary communications satellites”) were still in the design phase at the time.[37] With the introduction of the new infrared scanning system, the payload module may be significantly different from that of Tundra. It will probably be integrated by an affiliate of Kometa called the Experimental Production and Technical Center (OPTTs), where several buildings are known to be undergoing modifications to support the third phase of EKS.[38] According to Kometa’s annual report for 2015, those same buildings would be modified to build payload modules and ground support equipment for EKS.[39]

Aside from possible problems with the new payload module, the construction of the satellites is likely also hampered by Western economic sanctions that have had a major impact on the delivery of electronic parts to the Russian space industry. What may have further contributed to possible delays is the fact that the only other geostationary satellite using RKK Energiya’s UKP platform was crippled by a power failure only days after its launch in December 2017. This was a communications satellite for Angola (AngoSat 1) that had been designed for a 15-year mission. Having lost its confidence in RKK Energiya’s platform, Angola later turned to another Russian satellite manufacturer (ISS Reshetnev) to build a replacement satellite.

Other complicating factors are continuing delays in the manufacture of Angara-A5 rockets (caused in part by the opening of a new production facility in Omsk, Siberia), as well as the need to use the new Persei upper stage, even though that is a modification of the tried-and-tested Block-DM upper stage. Last August, Roskosmos chief Dmitriy Rogozin said the upper stage was expected to make its debut on the third Angara-A5 mission in 2021, but that the payload had not yet been determined.[40] Even in the unlikely event that the first geostationary EKS satellite would be ready by then, the Russians are unlikely to risk flying a high-priority military satellite on the first mission of a new upper stage.

Speaking in an interview last summer, the commander of Russia’s Aerospace Forces, Sergei Surovikin, said the deployment of the EKS constellation was expected to be completed in 2024. He also mentioned a “high-orbiting space reconnaissance system” that would begin deployment in 2023, but it is not clear if this was a veiled reference to the geostationary EKS satellites or a totally different project.[41] Even if the 2024 target date pertains only to the HEO satellites, the goal of orbiting six more Tundra satellites in the coming three years may be overly optimistic considering the big backlog in Russian military space launches.


The few Russian officials who have spoken out on Tundra have had nothing but praise for the system. Speaking to the Russian news agency TASS after the fourth Tundra launch in June 2020, an anonymous source in Russia’s military-industrial complex said the constellation can detect the launch of any ballistic missile or space launch vehicle from US territory. He added that the satellites are equipped with “infrared sensors of a new generation”, making it possible to detect with high precision the launch of rockets against the background of the Earth’s surface and to follow the flight trajectories of ballistic missiles and predict the impact zones of their warheads in the automatic mode.[42]

When placing EKS on an equal footing with SBIRS, Krivoruchko must have been talking about EKS in its final configuration. In terms of the sheer number of available sensors, SBIRS currently far exceeds EKS.
In an interview published in December 2019, Deputy Defense Minister Aleksei Krivoruchko claimed EKS can detect not only launches of intercontinental and submarine-launched ballistic missiles, but also of intermediate range missiles, short range missiles and space rockets. He said that at the time it had already detected 64 launches of ballistic missiles (including 35 non-Russian missiles) and 136 space launches (including 97 non-Russian launches). Krivoruchko described EKS “as good as” America’s Satellite-Based Infrared System (SBIRS) and “unique” in its ability to relay information in real time to the country’s leadership and the Armed Forces.[43]

When placing EKS on an equal footing with SBIRS, Krivoruchko must have been talking about EKS in its final configuration. In terms of the sheer number of available sensors, SBIRS currently far exceeds EKS. It consists of four GEO satellites each carrying both a scanning and staring sensor and three scanning sensors hosted on HEO satellites. In addition to that, some of the older DSP geostationary early warning satellites are also still operational. By comparison, EKS has four HEO satellites with a staring sensor that likely uses 20th century vidicon technology rather than the proclaimed “infrared sensors of a new generation”.

The SBIRS scanning sensor is intended for continuous observation and surveillance of traditional intercontinental ballistic missile threats, while the staring sensor, which has a relatively small field of view, is designed to detect very low signature, short-burn-duration theater missiles. Possibly, the Irtysh-E camera is supposed to accomplish similar tasks in its wide-angle and narrow-angle mode, but it is hard to say whether it can do this as effectively as the combination of sensors flown on the American satellites.

Much also hinges on its ability to distinguish missile plumes against the background of an illuminated Earth, which was a major problem for the Soviet-era satellites. Although the cryogenically cooled Irtysh was designed back in the 1980s to address that issue, it is impossible to tell if its modernized version lives up to those expectations. As pointed out earlier, the current orbital configuration of the Tundra constellation does indicate that the satellites are designed to see missile launches from the North American continent and the Atlantic Ocean against the backdrop of Earth. The fact that they have also observed many Russian launches is further confirmation of that. It may seem odd that the Russians use their early warning satellites to watch their own launches, but this actually continues a practice begun with the Soviet satellites, which also regularly observed domestic missile and space launches to calibrate and test onboard sensors.

The current EKS constellation clearly does not have the global coverage provided by SBIRS. At least one critical area that does not seem to be covered is the Pacific. This will have to wait until the eastern control center reaches operational status. Although the HEO satellites could theoretically observe this region from their eastern apogee, the Russians may elect to do this with one or more of the GEO satellites. In short, it is probably safe to say that the Russians will need to deploy their full constellation of HEO and GEO satellites with a combination of staring and scanning sensors to match the capabilities of SBIRS.

It should not be forgotten that the satellites are only one element of the country’s early warning system. Russia also possesses a large network of ground-based early warning radars which has been spectacularly upgraded in the past 15 years or so to provide coverage of all potential attack zones, a capability achieved not even in the Soviet days. Constituting the backbone of Russia’s modernized early warning network are Voronezh-type radars that are made of standard prefabricated elements and can be built in a relatively short time. Seven have been constructed since 2005 and several more are expected to become operational in the coming years. The network is also being expanded with over-the-horizon radars called Konteyner.


Ground-based and space-based elements of Russia’s early warning network shown during a Ministry of Defense briefing in December 2019. Source
The main benefit of the satellites is that they can spot missiles as soon as they are launched and before they enter the visibility zone of the radars, giving additional warning time. In some scenarios though, such as for missiles launched from submarines in the Atlantic, satellites don’t add very much to that warning time. The relatively sluggish pace of the EKS program may even be a sign that the satellites take a backseat to the ground-based early warning network. Aside from their early warning role, they also serve as intelligence tools, collecting data on foreign weapon activity and testing in order to assess weapons deployment, tactics and technical characteristics. Whenever it is completed, the EKS constellation will further strengthen an already robust early warning capability.

@Gautam, @randomradio, @vstol Jockey


Senior Member
Nov 30, 2017
I like how the Russians are doing their best to keep up with the Americans even through the massive funding gap.