6 Integrated Computer Processor for J 20.
In one of the early released images of J 20 one can see an access panel just aft the radome is open. At the exactly similar place F 22 raptor's CIP is placed. The CIP of F 22 provides processing functions for all the onboard systems. It is also similar to F 35's ICP. According to a Chinese source, The F 22's CIP have some limitaions as it uses a fourth generation level ( 3rd generation as per Chinese ) 1553B data bus. It has some limitations at the core level to achieve the data synthesis, in some minor systems also retains the third generation fighter system, using the 1553B data bus to exchange data, so the whole system structure is more complex, while the function is also limited, with the progress of information technology was also less when F 22 was developed.
THE F 22'S CIP HAVE SOME LIMITAIONS AS IT USES A FOURTH GENERATION LEVEL ( 3RD GENERATION AS PER CHINESE ) 1553B DATA BUS. IT HAS SOME LIMITATIONS AT THE CORE LEVEL TO ACHIEVE THE DATA SYNTHESIS, IN SOME MINOR SYSTEMS ALSO RETAINS THE THIRD GENERATION FIGHTER SYSTEM, USING THE 1553B DATA BUS TO EXCHANGE DATA, SO THE WHOLE SYSTEM STRUCTURE IS MORE COMPLEX, WHILE THE FUNCTION IS ALSO LIMITED, WITH THE PROGRESS OF INFORMATION TECHNOLOGY WAS ALSO LESS WHEN F 22 WAS DEVELOPED.
J 20's computer processor is claimed to have reached the level of F 35. As per the processor displayed during Zhuhai Air Show it has about 24 slots, now has 6 modules, in general, should be data, signal, video / image, storage, input and output control, power, etc., these modules constitute the system's signal, data processing system, respectively, the relevant subsystems to complete the signal and data processing System, and through high-speed data bus connected to achieve real-time data processing and exchange, from a variety of open situation, China's public display of ICP and F-35 ICP roughly the same, according to the relevant information, F-35 Of the two ICP ICP has 24 and 7 slots, a total of 31 modules, has been used 22, reserved for 9 for the upgrade, which uses a common data processing module POWERPC G4 processor, data processing speed of 40. 8O per second operation (OPS), the signal processing speed is 75.6G per second floating point operation (FLOPS), the image processing is a special signal processing method, the speed of 225.6G per second / plus the number of operations ( MACS).
7 ESM suite:
An advanced Electronic Support Measures suite is an essential part of a modern fighter aircraft’s mission avionics. An ESM suite helps to detect, identify, locate, record, analyze and even geolocate sources of electromagnetic energy, which for a fighter aircraft typically means an opposing force’s radar system. Modern ESM suites have grown in capability and complexity from mere warning systems to alert a pilot when their pilot was possibly being targeted by radar, to being capable of simultaneously geolocating multiple sources of radar emissions in real time and automatically activating counter measures, targeting solutions and cueing weapons.
Such suites are immensely difficult to identify, and may only sometimes be visible as small, low profile conformal antennae around an aircraft. Multiple sites that could hold small conformal antennae have been identified on J-20 through picture analysis, and there are likely multiple other sites with antennae which are not outwardly visible. Either way, it is certain that J-20 will be equipped with an ESM suite of some kind, and if trends for other fifth generation ESM suites are anything to go by, it is likely the Chinese Air Force would have similarly high requirements for J-20’s ESM suite.
Cockpit.
The Cockpit of Chengdu J 20 is quite similar to F 35 using one single large wide screen, touch input capable display. It is called as Luoyang photoelectric display ( rough translation ).
China's Luoyang Optoelectronic System also exhibited with the F-35 considerable overall cockpit system, we know that although the fourth generation of combat aircraft also achieved a glass cockpit hands from the lever, but in weapons and other aspects of operation The F-16C / D pilot launches an AIM-9X missile, which first launches the weapon system from the monitor and then presses the relevant switch to select the AIM-9X missile, and then press the switch again. Start the missile, open the cooling system, etc.
But the fifth generation fighter cockpit will be more advanced, the first of its screen larger, more information displayed, the pilot can get a wider range of tactical situation map, and the screen can be divided into several Sub-window, if a window of information is more important, you can also zoom in, while the display is more simple, some of the system test information into the back-end to deal with, the pilot saw the situation after the deal, so that you can Reduce the burden of system management, focus on tactical thinking and decision-making. From the air show open screen, the domestic integrated cockpit display system shows the right side of the superposition of tactical information on the digital map, the left is divided into multiple display areas, including plug-in management, flight information, while Luoyang photoelectric experts to accept The interview also said that the cockpit to achieve the "most pilots need to provide information to the pilot" concept, so that pilots do not need to directly deal with massive amounts of data, you can get the most needed information.
Stealth.
The cockpit and nose of J 20 have been optimised for low RCS largely taking inspirations from F 35 lightning ll. The usage of divertless supersonic inlets to hide the engine fan blades and provide efficient airflow to engines is one of them. Analysts have noted that the J-20 DSI reduces the need for application of radar absorbent materials. Additionally, the “bump” surface reduces the engine’s exposure to radar, significantly reducing a strong source of radar reflection.
( the production version featured a gold tinted cockpit )
Not seen on earlier prototypes but the production versions of J 20's various doors such as access panels, doors of weapon bays , doors of landing gear have their edges sawtooth shaped. This is a necessary design to reduce radar reflection of the edges of these lines. The surface at the joints of canards , and joints at wing slats and vertical tails and various surface controls have been shaped to defelect radar waves. The outward canted vertical stabilisers also deflect radar waves. All in all Chengdu J 20 despite being bigger in size than F 22 Raptor and Sukhoi PAK-FA shows considerable attention being provided for stealth. Guessing the number for radar cross section is a tough challenge for the analysts. It is important to note what kind of material is being used and how much radar waves it absorbs and how much reflects back. A considerable research is required in the field of radar absorbing paints, structural composites, nanotechnology, radar absorbant materials etc. Many sites and blogs are giving numbers like J 20's RCS may be 0.01 m² and have -20 to -30 db reflection losses. We have little trust on that figure. Without the knowledge of materials used in making its outer surface any number cannot be assumed.
THE F-22A IS CLEARLY WELL SHAPED FOR LOW OBSERVABILITY ABOVE ABOUT 500 MHZ, AND FROM ALL IMPORTANT ASPECTS. THE J-20 HAS OBSERVED THE ‘SHAPING, SHAPING, SHAPING’ IMPERATIVE, EXCEPT FOR THE AXISYMMETRIC NOZZLES, AND SOME CURVATURE OF THE SIDES THAT SMEARS A STRONG, BUT VERY NARROW SPECULAR RETURN INTO SOMETHING OF A MORE OBSERVABLE FAN. THE X-35 MOSTLY OBSERVED THE ‘SHAPING, SHAPING, SHAPING’ RULE, BUT SINCE THEN, TO QUOTE A COLLEAGUE, ‘HIDEOUS LUMPS, BUMPS, HUMPS AND WARTS’ HAVE APPEARED ON THE JSF TO DISRUPT THE SHAPING IMPERATIVE, FORCING EXCESSIVE RELIANCE ON MATERIALS, WHICH ARE AT THE REAR-END OF THE PATH TO ‘LOW OBSERVABILITY’.
TO READ A COMPREHENSIVE ASSESMENT ON J 20 CLICK BELOW.
J 20 PEACE IN OUR TIME
Armament.
Disclaimer - Their is no official commitment from PLA-AF about what weapons be carried by J 20. Their are a large number of weapons in China that can be carried by aircrafts, but only selected weapons that the writer thinks can be accommodated inside the constricted size of J 20's weapon bays and were seen in photos. Their may be a posiibility that J 20 may not be armed with some of these.
Air to air
1. PL 10
Each of J-20’s two side weapons bays are small, and designed to accommodate a single short range air to air missile, similar to that of the F-22. Photos of J-20 prototypes have openly displayed carriage of the new generation PL-10 SRAAM in J-20’s side bays, and given the relatively narrow width of these side bays, it is likely that PL-10 will be J-20’s only primary SRAAM when it enters initial service and would be unable to carry older generation SRAAMs with larger wingspans such as the PL-8 family.
PL-10 is widely considered to be a SRAAM in the same generation as AIM-9X, R-73M, ASRAAM, IRIS-T, and AAM-5, among others, and likely includes high off boresight capabilities, a decoy resistant imaging infrared seeker, and possibly lock on after launch capabilities.
2. PL 12
In mid 2012, J-20 prototype 2002 was seen carrying a pair of crop wing PL-12 missiles, sometimes called PL-15 or PL-12C. From those pictures it appeared like J-20 was capable of carrying four beyond visual range weapons within its main weapons bay, however there has been speculation as to whether the weapons bay may have experienced minor widening in the 201X series of prototypes, to accommodate six BVR weapons similar to the F-22.
The PL-12C/PL-15 is thought to be an advanced derivative of the PL-12 BVR air to air missile, and has been considered to be the Chinese Air Force’s equivalent to the AIM-120D. Speculation has persisted as to whether the PL-12C/PL-15 may be equipped with a more advanced active/passive seeker, advanced propulsion such as dual pulse motor, and advanced datalinking capabilities.
PL-12C/PL-15 have yet to be seen onboard other aircraft apart from a J-11B (for testing purposes), but it is expected that the missile will become the new standard BVR AAM for Chinese military aviation, and rumours in late 2015 suggested the missile had been successfully fired from a J-16 strike fighter.
Needless to say, no reliable range figures or other specifications for the missile exists, though it has been suggested the PL-12C/PL-15 may have an effective range of nearly 200km.
3 PL 15 / PL 21
PL 15 is a ramjet powered BVR AAM, sometimes called PL-21 but sometimes also called PL-15, which creates substantial confusion given the crop wing PL-12 is sometimes also called PL-15.
No clear pictures of PL-21 exist as of yet, and it is unclear as to whether the programme is still under development, however in the late 2000s there were persistent rumours surrounding the designation for a new ramjet powered BVR AAM.
The configuration of PL-21 from various semi official illustrations depict a missile with relatively large fins (suggesting J-20 may only be able to carry four such missiles even with a minor weapons bay enlargement), and two ramjet intakes. The overall configuration is not dissimilar to that of the European Meteor missile, and would likely offer similarly advanced kinematic capabilities.
Air to Surface Missiles.
TL-7 ( Export version KD-88 ) Air Launched Cruise missile.
The KongDi 88 (KD-88 or C-802KD) is an air launched land attack cruise missile (LACM) derived from the YJ-83/C-802 anti-ship cruise missile (ASCM). The deployment of this missile by the People's Liberation Army Air Force (PLAAF) was confirmed in November 2006. The KD-88 is able to deliver a 165 kilogram High Explosive (HE) warhead at ranges of up to 200 kilometers cruising at a highly subsonic speed of Mach 0.9. The guidance system combines an inertial measurement unit (IMU) with a radar homing head for terminal guidance and a data-link to update the target location in-flight at midcourse.
( the JH 7 fighter bomber carrying TL 7 missile )
Their are specific reasons why we feel that KD-88 could be featured on J 20. It is because it has a diameter of just 0.7m and that too with wings extended. A folding wing variant can be developed or may have been developed. Their is a smaller version of this missile which has been featured in Wing Loong UCAVs. Their are both land attack and AntiShip versions of this missile.
The JH-7 fighter bomber has been armed with TL-7 missiles and they usually are seen carrying two such missiles. So it is very likely that J 20 may also carry two such missiles along with two Pl-12s in main weapon bays and two PL-10s in side weapon bays.
TO KNOW MORE ABOUT CHINESE CRUISE MISSILES CLICK ON THE BUTTON BELOW.
CHINESE ASMS
Bombs.
1. Luoyang/CASC FT-3/FT-4/ FT-5/ FT-6 Satellite Aided Inertially Guided Bomb family.
The FT-3/FT-4 are satellite/inertial guidance kits for a 250 kg / 500 lb class general purpose bomb body. The FT-3 employs a unique cruciform strake arrangement on the tailkit. The variant displayed at Zhuhai 2008 is different in many respects from demonstrators previously displayed, which appeared to use a modification of the LS-6 tailkit. The FT-4 employs a planar wing kit similar to the Kerkanya/JDAM-ER.
The FT-5 is the smallest guidance kit in the Luoyang/CASC FT series, intended for a 100 kg bomb body. The strake kit design and tail kit are modelled on the FT-1 configuration. The bomb casing geometry displayed in 2009 is relatively conventional and evidently not intended for deep penetration of concrete in the manner of the GBU-39/B SDB warhead.
The FT-6 displayed in 2010 at Zhuhai employed a slimline low drag bomb casing, with a set of planar glide wings similar to those employed with the FT-2, FT-4 and LS-6. This weapon would appear to the planar wing derivative of FT-3 variant with a low drag 250 kg / 500 lb bomb body.
2. Luoyang/CASC LS-6 Satellite Aided Inertially Guided Bomb Family.
The 500 kg / 250 kg LS-6 glidebomb design is modelled in many respects on the concept of the Australian developed planar wing Kerkanya glidebomb kit, more recently adapted to form the JDAM-ER. Unlike the Kerkanya which uses a low wing monoplane configuration with a blended adaptor fairing, the LS-6 glide wing kit is much simpler in design and the weapon flight configuration is that of a high wing monoplane. Cited range for an 11 km release altitude at 900 km/h is 60 km, considerably less than the Kerkanya/JDAM-ER design.
In 2010 Luoyang displayed 100 kg and 50 kg derivative designs, which are clearly intended to be analogues to the US GBU-39/B Small Diameter Bomb (SDB) which has been developed to fit the weapon bays of the F-22A Raptor.
These weapons are clearly designed for compact internal carriage, and it is reasonable to conclude that the intended launch platform is the J-20 stealth fighter.
Both the 100 kg and 50 kg derivatives are fitted with nose mounted electro-optical seekers, with high quality planar windows. JDW's Hewson reports this to be a semi-active homing laser seeker, however, such a seeker is not compatible with a weapon intended to be released in multiple round salvos.
The regime of operation is however compatible with a scene matching area correlator seeker, such as that employed in the Russian GNPP KAB-500/1500Kr series, or trialled in the US Navy DAMASK/HART effort. A seeker modelled on the DAMASK or KAB-500/1500Kr would provide high accuracy, and a redundant guidance regime should the satellite navigation channel be successful jammed.
The type of satellite navigation receiver and inertial unit employed in the LS-6 series have not been disclosed to date. While the Luoyang website states the use of GPS, other sources claim the use of Glonass. It is likely the receiver is like a number of Russian designs, a dual mode device which can use C/A GPS or secure Glonass concurrently.
Technical data:
a) Kill Area:
For normal target:5,000 - 10,000 m2
For armored targe:100 - 500 m2
b) Operational Altitude and Speed:
Launch altitude:4,000 - 11,000 m
Launch speed:600 - 1,000 km/h
c) Maximum Launch Range:No less than 60 kilometers with a launch altitude of 11,000 meters and an initial speed of 900 km/h.
d) Guidance Mode:Combined GPS/INS guidance.
e) Guidance Accuracy: ≤15 meters CEP